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Correlation between the Kolmogorov-Sinai entropy and the self-diffusion coefficient
in simple liquids
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Molecular dynamics simulations were performed for soft- and hard-sphere systems, for number densities
ranging from 0.5 to 1.0, and the Kolmogorov-Sinai entropy~KS entropy! and self-diffusion coefficients were
calculated. It is found that the KS entropy, when expressed in terms of average collision frequency, is uniquely
related to the self-diffusion coefficient by a simple scaling law. The dependence of the KS entropy on average
collision frequency and number density was also explored. Numerical results show that the scaling laws
proposed by Dzugutov, and by Beijeren, Dorfman, Posch, and Dellago, can be applied to both soft- and
hard-sphere systems by changing to more generalized forms.

PACS number~s!: 61.20.Ja, 05.45.2a, 05.70.Ce
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I. INTRODUCTION

Studies by Hoover, Posch, and co-workers@1–4# pio-
neered the numerical calculation of Lyapunov exponents
molecular dynamics simulation. The Lyapunov spec
which provide useful information characterizing the deg
of chaos present in dynamical systems, have been ex
sively investigated for simple fluids through numerical a
theoretical studies. Progress has been made to the poin
the second law of thermodynamics and macroscopic irrev
ibility can be explained with these quantities@5#. Further-
more, their relations to the transport coefficients or the th
modynamic entropy in the condensed phase are now
important issue@6#. In an intriguing paper by Dzugutov@7#,
the self-diffusion coefficient in simple atomic condensed s
tems, expressed in terms of the frequency of atomic co
sions, was shown to be related to thermodynamic entropy
a universal scaling law. In later studies, Dzugutov, Aure
and Vulpiani @8# numerically examined the connection b
tween the Kolmogorov-Sinai~KS! entropy and the thermo
dynamic excess entropy obtained by the thermodynamic
tegration method; the authors found that there exists a lin
relationship between these two quantities. However, the t
modynamic entropy obtained by Dzugutov in Ref.@7#, which
is restricted to the two-particle approximation, showed
large deviation from that obtained by the thermodynam
integration method. It should be noted that the values
excess entropy restricted to the two-particle approxima
are not reliable in dense fluids. Moreover, the numerical v
ues of the self-diffusion coefficients do not seem to be c
sistent with those proposed by Speedy@9# or Erpenbeck and
Wood @10#.

Since the basic underlying dynamical processes of di
sion are collisions between particles with convex poten
surfaces, the phase-space trajectory is highly unstable du
its sensitive dependence on the initial conditions. This p
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nomenon is characterized in terms of the set of Lyapun
exponentsl l ( l 51, . . . ,6N), usually ordered from largest to
smallest. KS entropy is a measurement of the time rate
information loss as a chaotic phase-space trajectory evo
in phase space. Since KS entropy has the dimensionalit
inverse time, its description requires a universal time sc
The most natural time scale in atomic dynamics is the av
age collision frequencyn, which can be defined in a system
of hard spheres as

n54rs2S pkBT

m D 1/2

g~s!, ~1!

wheres the is effective atomic diameter andr is the number
density defined asr5N/V @11#. For the case of a soft poten
tial we defines as the position of the first maximum of th
pair correlation functiong(r ). In this study, we examine the
relationship between the values of the KS entropy and
self-diffusion coefficientD for soft- and hard-sphere fluids
respectively, for various number densitiesr ranging from 1.0
to 0.5; this essentially includes the entire liquid regime up
near solidification. In Sec. II we briefly describe the nume
cal methods for the evaluation of the time evolution
many-body systems in phase space and in tangent spac
Sec. III we present our results and discuss the behavior oD
with respect tohKS, in addition to the relation betweenhKS
and the average collision frequencyn. Our conclusions fol-
low in Sec. IV.

II. DESCRIPTION OF THE MODEL

Simulations were performed for three-dimensional clas
cal systems consisting ofN identical particles with massm in
a volumeV with periodic boundary conditions. Then, th
equations of motion for the state vectorG(t) were conve-
niently written as an autonomous system of first-order diff
ential equations by

Ġ~ t !5G~G~ t !!, ~2!
6516 ©2000 The American Physical Society



d

c

ed
y
es

y
a

to
a

1%
er
ui
1

h

tio
e
n

er
nt

nt
e

d
in

ri
o
p
tiv

re
e
. I
ce
ra
ti
n
In
gy
th
th

le

e
ex-

nce

ent
ke
n’s
ry

by
s.
for

r-

the

a

e-
oms
n.
opy
al-
ces
th

we
-

e of
ys-
n

u-

PRE 62 6517CORRELATION BETWEEN THE KOLMOGOROV-SINAI . . .
where

G~ t !5„r1~ t !,r2~ t !, . . . ,rN~ t !,p1~ t !,p2~ t !, . . . ,pN~ t !….

For a system with continuous interaction potential, we use
short-range purely repulsive soft potential with the form

V~r !54eF S s8

r D 2ng

2S s8

r D ngG1e, ~3!

which has no second derivative at the cutoff distan
21/ngs8. The Weeks-Chandler-Anderson~WCA! potential
corresponds tong56. Throughout this paper we have us
the usual reduced units: distance made dimensionless b
viding by s8, energy and temperature made dimensionl
by dividing by the characteristic interaction energye defined
in Eq. ~3!, and time made dimensionless by dividing b
(ms2/e)1/2. The equations of motion are integrated with
fourth-order Runge-Kutta algorithm with a time stepDt
50.001. The initial temperature was set sufficiently high
obtain a random configuration; then velocities were repe
edly scaled to adjust to the required temperature within a
deviation. Once the required temperature was obtained, it
tions over 23105 time steps were performed to reach eq
librium. After equilibrium was obtained, we iterated for
3106 time steps corresponding to 103 time units to evaluate
static and dynamic properties. Energy was conserved wit
accuracy of one part in 105 over an entire run of typically
103 time units.

On the other hand, for hard-sphere systems the equa
of motion are no longer written as a continuous form. B
tween collisions, the particles move in a straight line; whe
ever two particles collide, the smooth streaming is int
rupted by elastic collisions which are discontinuous eve
This can be represented by the following discrete map:

Gf5F~Gi !, ~4!

where the superscriptsi and f indicate the initial and final
states of mapF specifying the action of instantaneous eve
on phase vectorG. F is differentiable with respect to th
phase-space coordinates.

To calculate the Lyapunov spectra, we consider a bun
of trajectories that start at infinitesimally nearby points
phase space, with each trajectory in the bundle denoted
G(0)1dl(0) for some infinitesimaldl(0) (l 51, . . . ,N).
The time rate of separation for this trajectory bundle in va
ous directions perpendicular to the direction flow, if exp
nential, is characterized by a set of nonzero Lyapunov ex
nents that are positive in expanding directions and nega
in contracting ones. According to Oseledec@12#, there are
6N orthogonal initial vectors yielding a set of exponents
ferred to as the Lyapunov spectrum of the system. Th
exponents are independent of metric and initial conditions
a Hamiltonian system, phase volume is conserved, and
tain directions must be exactly compensated for by cont
tion in other directions. Furthermore, due to the symplec
nature of the equations of motion, the Lyapunov expone
appear in pairs of equal magnitude and opposite signs.
system of 6N dimensions, the conservations of total ener
total momentum, center of mass, and natural behavior in
flow direction cause eight exponents to disappear. For
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numerical computation of Lyapunov spectra of differentiab
dynamical systems, the method of Benettinet al. @13,14# is
standard. By linearizing the equations of motion the tim
evolution of a complete set of tangent vectors can be
pressed as

ḋl~ t !5M ~G~ t !!dl~ t !1O„dl
2~ t !… ~ l 51, . . . ,6N!, ~5!

whereM „G(t)…5]G„G(t)…/]G(t) is the stability matrix and
dl(t) is the infinitesimal tangent vector between the refere
trajectory and the perturbed trajectory. 6N dl(t) vectors con-
sist of basis vectors of the tangent space.

The time evolution of the hard-sphere system in tang
space involves hard elastic collisions of particles. To ta
these collisions into account, a generalization of Benetti
method is required. Briefly, the hybrid method of ordina
differential equations and discrete maps was developed
Dellago and Posch@15# to describe hard-sphere dynamic
The time evolution of the complete set of tangent vectors
hard-sphere systems is

dl
f5

]F

]G
•dl

i1S ]F

]G
•G~Gi !2G„F~Gi !…D dt l

c, ~6!

wheredt l
c is the time delay between collisions in the refe

ence system and in a satellite system displaced bydl . ]F/]G
is the matrix of the derivative ofF. For a detailed description
of the model and the computational techniques, we refer
reader to Ref.@15# for hard spheres and Refs.@1,2# for soft
spheres.

The Lyapunov exponents are obtained from

l l5 lim
t→`

1

t
lnS udl~ t !u

udl~0!u D , ~ l 51, . . . ,6N!. ~7!

According to the Pesin formula@16#, KS entropyhKS is de-
fined as the sum of all positive Lyapunov exponents in
closed system,

hKS5 (
l i.0

l i . ~8!

The calculation of the Lyapunov exponents is the most tim
consuming step, so we considered a system of 32 at
moving in a rectangular periodic box for this calculatio
The question of particle-number dependence of KS entr
per particle still remains to be answered. However, our c
culations for the soft-potential case show that the differen
in the values ofhKS/N are negligible between a system wi
N532 and one withN564. For example, atr50.92,
hKS/N55.08 for bothN532 andN564. The computations
for the hard-sphere system are much more efficient, so
adoptedN564 for the calculation of the Lyapunov expo
nents. We also confirmed that for hard spheres the valu
hKS/N shows no difference between the results for the s
tems withN564 andN5108, as observed by van Beijere
et al. @17#.

To obtain the self-diffusion coefficientD, the Green-Kubo
formulation@18–20#, expressed as the integrated velocity a
tocorrelation function~VACF!, was used
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D5 lim
N→`

lim
t→`

E
0

t

C~t;N!dt, ~9!

whereC(t;N)5( i 51
N ^v i(0)•v i(t)&/3N, with v i(t) a veloc-

ity of a given particle. Due to the periodic boundary con
tions imposed in the simulation, the size dependence of
VACF over the finite range of dynamical time accessible
the calculations was rather strong. The relatively small nu
ber of particlesN does not allow the coexistence of the tw
phases, and the system is in either the solid or liquid ph
Furthermore, the periodic boundary conditions enhance
formation of the solid phase. If each simulation starts from
regular configuration with the particles arranged on a
lattice ~simulation A!, the formation of the solid phase i
more likely to occur in the two-phase region. On the oth
hand, if the simulation starts with an initial configuratio
obtained by cooling the fluid state of higher temperat
~simulation B!, an extension of the fluid branch towar
higher density would be expected. We performed both sim
lations A and B withN5500. The self-diffusion coefficients
obtained from simulation A suddenly dropped to essentia
zero fromr50.92, because of the early formation of a so
structure enhanced by the periodic boundary conditions.
the other hand, those obtained from simulation B chan
smoothly asr increased beyond 0.92, showing that the s
tem was still in a fluid state. Thus, simulation B is mo
suitable to reduce possible size effects, especially near
phase boundary when the simulation is performed with
relatively small number of particles. As expected, the n
merical values ofD ~obtained from simulation B! for hard
spheres showed a perfect match with those found by Al
Gass, and Wainwright~AGW! @21#, since both are based o
molecular dynamics~MD! calculations for systems of 50
particles. But the values ofD for the soft-sphere system wit
the WCA interaction potential were consistently above
estimates by AGW; this seems to be attributable to the
that the effective diameter for the soft sphere defined as
first maximum of theg(s) was overestimated. Recent wo
by Erpenbeck and Wood~EW! @10# extended the AGW
study with respect to system-size dependence and the l
time tail effect of VACF, and presented an improved formu
for the self-diffusion coefficient. In Fig. 1, the calculate
self-diffusion coefficients for hard spheres and soft sphe
with the WCA interatomic potential, normalized with respe
to the Enskog-theory diffusion coefficient, are compar
with the EW expression. The formula by Erpenbeck a
Wood can be written as

D/DE5110.003 828 013r* 13.381 828 1r* 2

13.868 772r* 3, ~10!

whereDE is the Enskog-theory transport coefficient, defin
as

DE5
0.382 11s

r* Apmbg~s!
. ~11!

Here r* is the reduced density defined asrs3. The two
results are not in exact accord, but they show the same tr
as seen in Fig. 1.
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The value ofD is sensitive to both the size and phase
the system, whereas the KS entropy per particle seems t
insensitive to both factors. Our numerical studies show t
simulation B cannot generate the fluid phase forr.0.9 with
N532 due to the periodic boundary conditions. Instead,
final structures always result in periodic solid structures; c
responding self-diffusion coefficients become essentia
zero due to the small system size. However, withN564,
simulation B can generate the liquid phase forr50.92, and
the corresponding value ofD is 0.0201, which can be con
sidered that of the liquid phase. Still,hKS/N (55.08) for
N564 is essentially identical to the value forN532
(hKS/N55.08; see Table I!.

III. RESULTS AND DISCUSSION

For the system with WCA interaction potential corr
sponding tong56 in Eq. ~3!, the KS entropy per particle
hKS/N shows a single maximum atr50.625, and vanishes
at very low or high density, whereas the KS entropy p
particle divided by the average collision frequency show
steady decrease as density increases. These results are

FIG. 1. Self-diffusion coefficientD, normalized with respect to
the Enskog-theory diffusion coefficientDE , as a function of den-
sity. Squares correspond to a soft-sphere system with WCA po
tial; diamonds correspond to a hard-sphere system~HS!; the solid
line is the empirical expression of the EW formula (T* 50.7).

TABLE I. Numerical results for the KS entropy and the se
diffusion coefficients for the WCA potential and hard spheres~HS!,
obtained through simulation B.

WCA HS

r hKS /N D r hKS /N D
(N532) (N5500) (N564) (N5500)

0.5 6.74 0.202 0.5 7.88 0.203
0.6 7.15 0.142 0.5982 9.83 0.140
0.7 7.00 0.0920 0.6998 12.2 0.0901
0.8 6.33 0.0543 0.8028 15.0 0.0537
0.9 5.25 0.0273 0.8496 16.4 0.0389
0.92 5.08 0.0227 0.9002 18.3 0.0253
0.94 4.80 0.0189 0.9478 19.1 0.0172
0.96 4.51 0.0157
0.98 4.19 0.0119
1.0 3.85 0.00906
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sistent with those presented by Dellago and Posch@4#. On
the other hand,hKS/N for the hard-sphere system increas
steadily except at the point where the fluid-solid phase tr
sition occurs, as shown in@4#.

The Lyapunov exponents are local quantities in the se
that they depend on the dynamical events taking place in
system—namely, collisions—for which the velocitie
change. So it is reasonable to expect that there exists a
eral relationship between the Lyapunov exponents and
self-diffusion coefficients. In Fig. 2, we present the relatio
ship between the self-diffusion coefficients and KS entro
for various densities. The diamonds and squares denote
results for the hard- and soft-sphere systems, respectiv
circles denote theD values obtained from the EW formula
To facilitate the comparison of the behavior for the syste
of hard and soft spheres, we use the following dimension
form for the self-diffusion coefficient and KS entropy:D*
5(D/DE)/(n/n1), hKS* 5hKS/N(n/n1)l1, whereDE is the
Enskog-theory transport coefficient,n is the average colli-
sion frequency,n1 is defined asn154(kBT/pms2)1/2, and
l1 is the largest Lyapunov exponent. This figure demo
strates convincingly that there exists a universal relations
betweenD* and hKS* that is valid for systems of both so
and hard spheres. This observation implies that atomic
fusion is a geometric phenomenon which can be uniqu
accounted for by the frequency of binary collisions and
entropy, representing a measure for the time rate of infor
tion loss and structural uncertainty. Specifically, through
the range of density that corresponds to the liquid dom
(0.5<r<0.8), the diffusion adheres to an Arrhenius-like b
havior, which can be described by a simple scaling la
Table I shows the KS entropy per particle (hKS/N) and the
self-diffusion coefficients for systems of hard spheres a
soft spheres with WCA interaction potential, obtain
through simulation B for 0.5<r<1.0. It is worth mentioning
that the KS entropy values obtained from simulation A a
those obtained from simulation B show no noticeable diff
ence, even in the regime where the linear relationship bre
down.

Recently, van Beijeren and his colleagues@17# have
shown both theoretically and analytically that a linear re
tionship holds betweenhKS/Nn8 and lnn8 for hard-sphere

FIG. 2. The dimensionless self-diffusion coefficient defined
D* 5(D/DE)/(n/n1) as a function ofhKS /N(n/n1)l1. Diamonds
and squares denote MD results for the hard-sphere~HS! and soft-
sphere~WCA potential! systems, respectively; circles denoteD val-
ues obtained from the EW formula (T* 50.7).
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systems at low density. They showed that the KS entropy
particle and per collision, when expanded with respect
density, becomes linear for a dilute gas in equilibrium,

hKS/~Nn8!5a@2 ln~n8/n1!1b#1O~n82!, ~12!

wherea is equal to 1 for the hard-sphere system. Notice t
the definition ofn8 in Ref. @17# is 4rs2(pkBT/m)1/2, which
differs from the average collision raten by the factorg(s).
Our numerical results for the hard-sphere system show
the above linear relationship does not hold in densities c
responding to a liquid regime (0.5<r<0.8). However, if we
use n, which includes the average collision numberg(s),
instead ofn8 in Eq. ~12!, thenhKS/Nn vs lnn shows a linear
relationship witha50.407, even in the liquid regime (0.
<r<0.8). This suggests that the rate of information loss
collision is still uniquely related to the average collision ra
with the same scaling law in a more generalized form,
which n8 is substituted forn, even in the high density region
The relation becomes nonlinear in the region 0.8<r<1.0,
corresponding to the regime that precedes the formation
the solid. We extended the numerical study to systems w
continuous interaction potentials and found that in 0.5<r
<0.8—which corresponds to the liquid regime—the line
relationship also holds, even though slopea becomes differ-
ent from that of the hard-sphere system. For the poten
defined in Eq.~3!, we obtained the slopea50.708, 0.597,
and 0.479, in the liquid regime forng56, 10, and 16, respec
tively, at T* 50.7. Thus, the slope approaches that of t
hard-sphere system asng increases. This study shows th
the linear relationship between the KS entropy and aver
collision rate still holds even for a system of soft spher
This tells us that the rate of information loss can be uniqu
accounted for by collision frequency in the region where
diffusion shows an Arrhenius-like behavior. If we furthe
scalehKS/Nn by l1, the largest Lyapunov exponent, an
plot hKS/Nnl1 vs lnn, we find that the same linear relation
ship can be applied to systems with different interaction
tentials throughout the density range corresponding to
liquid domain, as shown in Fig. 3.

It is also instructive to view the dynamics of the tange
vectors in the subspaces associated with special degre
freedom. In the present case, the tangent space is a si

s FIG. 3. hKS /Nnl1 as a function of average collision frequenc
n. Diamonds represent data for the hard-sphere system; squ
triangles, and circles correspond to those for systems interacting
the soft potentials defined in Eq.~3! with ng56, 10, and 16, respec
tively.
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product of configuration spaceR and corresponding momen
tum spaceP. Then the projection of the tangent vectordl
onto X space isdX,l5P(X)dl , whereX5R or P. The pro-
jection operatorP(X) can be represented as a diagonal m
trix with elementPaa(X) equal to unity, if thea axis of dl
belongs toX, and equal to zero otherwise. We examined
behavior of the mean-squaredX components ofdl asr var-
ies, which is defined asdX,l

2 5^dX,l•dX,l&. Figures 4~a! and
4~b! show dX,l

2 (X5P orR) as functions ofl for the hard-
sphere and the soft-sphere~WCA potential! systems, respec
tively. Eight of the Lyapunov exponents vanish for reaso
given in Sec. II (93< l<100); the correspondingdX,l

2 com-
ponents have no meaning, since Gram-Schmidt reortho
malization has no ordering effect on the directions of th
tangent vectors. On average, 96.2% of the squared leng
d1 for hard spheres and 97.4% of that ofd1 for soft spheres
are contributed from the momentum subspace forr50.5;
these numbers rise to 99.0% and 99.4%, respectively, for
51.0. This means that the instability of the phase-space
jectory is mostly accumulated in the momentum subspac
high density regions. For the same number density,
mean-squaredP component ofd1 for the soft-sphere system
is higher than that of the hard-sphere system. We sug
that this is because the soft sphere has a larger effec
diameter than the hard sphere. We also examined the s
tures of the pair correlation functionsg(r ) obtained from
simulation B for a wide range of densities. In the case
dilute gases (r,0.5), local structural correlation express
in terms ofg(r ) is confined to the first-neighbor shell. A
density increases, the range of the structural correlation
comes longer. It is interesting to note that the linear relat
described by Eq.~12! breaks down when the structural co
relation extends to the third-neighbor shell, which can
considered as the signature of the formation of the so
Giaquinta and Giunta have shown that the liquidlike regi
(0.5<r<1.0) can be divided into two regimes, dependi
on whether structural locking develops@22#. Our studies
show that, in the liquidlike regime characterized by stro
cooperativity (0.5<r<0.8), diffusion adheres to a
Arrhenius-like behavior. A nonlinear type of relation hold
in the regime (0.8<r<1.0) where structural locking deve
ops, which corresponds to the regime that prepares the
mation of a solid.

IV. CONCLUSIONS

In this paper, we studied the instability properties
phase-space trajectories for simple fluids in relation to s
diffusion. Detailed numerical analyses of the KS entropy a
self-diffusion coefficient as a function of density indica
that the reduced self-diffusion coefficient in a dimensionl
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form @D* 5(D/DE)/(n/n1)# has a unique relation with the
dimensionless KS entropy per particle scaled by the larg
Lyapunov exponent@hKS* 5hKS/N(n/n1)l1# by a simple
scaling law:D* }exp(hKS* ). Next we examined the relation
ship between the KS entropy and average collision freque
for both systems of hard spheres and systems with cont
ous interaction potentials. The results demonstrate
hKS/Nnl1 shows the same linear relationship with lnn, even
in systems with different types of pair potential. From ana
sis of the mean-squaredX components of the tangent vector
we also found that the major contributions to the instabil
of the phase-space trajectory come from the momentum v
ables for high density regions.
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FIG. 4. Mean-squaredX componentsdX,l
2 as a function of the

Lyapunov exponent indexl for a hard-sphere fluid with 64 particle
~a! and for a soft-sphere fluid with 32 particles~b!, for various
densities ranging fromr50.5 to 1.0. The subspacesX are the mo-
mentum subspaceP ~solid lines! and the position subspaceR
~dashed lines!.
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